Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Seik Weng Ng

Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.009 \AA$
R factor $=0.027$
$w R$ factor $=0.069$
Data-to-parameter ratio $=11.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Rerefinement of tris(dimethylammonium) dodecamolybdophosphate in the space group $\boldsymbol{R} \overline{3} \boldsymbol{m}$

In the title compound, $\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{3}\left[\mathrm{Mo}_{12} \mathrm{O}_{40} \mathrm{P}\right]$, the Keggin ion $\left[\mathrm{PO}_{40} \mathrm{Mo}_{12}\right]^{3-}$ lies on a special position of site symmetry 3 m and the $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]^{+}$cation on a special position of site symmetry m.

Comment

The Keggin salt, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{3}^{+}\left[\mathrm{PO}_{40} \mathrm{Mo}_{12}\right]^{3-}$, which was obtained from the reaction of N, N-dimethylformamide and $\mathrm{H}_{3}\left[\mathrm{PO}_{40} \mathrm{Mo}_{12}\right]$, has been described in the space group $R \overline{3}$ (Liu et al., 2004). PLATON (Spek, 2003) suggests the correct space group to be $R \overline{3} m$. When the structure is rerefined in the higher-symmetry space group, the $\left[\mathrm{PO}_{40} \mathrm{Mo}_{12}\right]^{3-}$ ion lies on a special position of site symmetry $3 m$ and the $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]^{+}$ cation on another special position of site symmetry m.

$$
\begin{equation*}
\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{3}^{+}\left[\mathrm{Mo}_{12} \mathrm{O}_{40} \mathrm{P}\right]^{3-} \tag{I}
\end{equation*}
$$

The revised structure, (I) (Fig. 1 and Table 1), is isostructural with a molybdophosphate reported as having a carbenium counter-ion, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{3}^{+} \cdot\left[\mathrm{PO}_{40} \mathrm{Mo}_{12}\right]^{3-}$ (Jian et al., 2004), the two structures having essentially identical cell dimensions and atomic coordinates (of non-H atoms). However, as there is no precedent for the existence of a stable carbenium cation in the Cambridge Structural Database (Version 5.25; Allen, 2002), this yellow compound is probably the title ammonium complex; indeed, the structure could be rerefined to a lower R index.

The mixed-metal Keggin compound formulated as $\left[\mathrm{H}_{3} \mathrm{PO}_{40} \mathrm{Mo}_{6} \mathrm{~W}_{6}\right] \cdot 3\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$ was also incorrectly refined in $R \overline{3}$ (Peng et al., 1998); the position of the H atom in the Keggin framework was inferred on the basis of the electroneutrality of the presumed dimethyl ether solvate. The structure features short contacts between the ether O atom and the O atoms of the neutral Keggin molecule. When the space group is revised ($\mathrm{Ng} \& \mathrm{Rae}, 1999 ; \mathrm{Ng} \& \mathrm{Xie}, 2003$) to $R \overline{3} \mathrm{~m}$, the non-H atomic coordinates are again nearly identical to those of the ammonium 12-molybdophosphate. As such, the compound is most likely $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{3}^{+}\left[\mathrm{PO}_{40} \mathrm{Mo}_{6} \mathrm{~W}_{6}\right]^{3-}$. The metal atoms are statistically disordered.

Experimental

The diffraction data were kindly provided by the senior author of the $R \overline{3}$ structure (Liu et al., 2004).

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{3}\left[\mathrm{Mo}_{12} \mathrm{O}_{40} \mathrm{P}\right]$
$M_{r}=1960.53$
Trigonal, $R \overline{3} m$
$a=16.541(2) \AA$
$c=25.154(7) \AA$
$V=5960(2) \AA$
$Z=6$
$D_{x}=3.277 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens $P 4$ four-circle diffractometer
ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.295, T_{\text {max }}=0.484$
3044 measured reflections 1304 independent reflections
1150 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.069$
$S=1.08$
1304 reflections
116 parameters
H -atom parameters constrained
Mo $K \alpha$ radiation
Cell parameters from 34
\quad reflections
$\theta=5.0-12.9^{\circ}$
$\mu=3.81 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Block, yellow
$0.52 \times 0.34 \times 0.34 \mathrm{~mm}$

$R_{\text {int }}=0.037$
$\theta_{\max }=25.0^{\circ}$
$h=-1 \rightarrow 19$
$k=-19 \rightarrow 1$
$l=-6 \rightarrow 29$
3 standard reflections
every 97 reflections
intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.038 P)^{2}\right. \\
& +0.2473 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.35 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.91 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00054 \text { (3) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Mo1-O1	1.680 (4)	Mo2-O6	1.687 (3)
Mo1-O2	1.910 (1)	Mo2-O7	1.926 (3)
Mo1-O3	1.922 (3)	Mo2-O10	2.450 (3)
Mo1-O10	2.423 (4)	Mo3-O7	1.913 (3)
Mo2-O3	1.907 (3)	Mo3-O8	1.927 (2)
Mo2-O4	1.909 (1)	Mo3-O9	1.676 (4)
Mo2-O5	1.922 (2)	Mo3-O11	2.443 (4)
O1-Mo1-O2	101.8 (2)	O4-Mo2-O10	83.4 (1)
O1-Mo1-O3	102.0 (1)	O5-Mo2-O6	101.0 (2)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 10$	173.4 (2)	O5-Mo2-O7	87.7 (2)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 2^{\mathrm{i}}$	85.1 (2)	O5-Mo2-O10	72.1 (1)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 3$	156.2 (2)	O6-Mo2-O7	102.3 (1)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O}^{\text {ii }}$	89.0 (2)	O6-Mo2-O10	171.0 (1)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 10$	83.0 (1)	O7-Mo2-O10	83.4 (1)
$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{O} 3{ }^{\text {ii }}$	87.2 (2)	O7-Mo3-O7 $7^{\text {iii }}$	86.3 (2)
O3-Mo1-O10	73.3 (1)	O7-Mo3-O8	156.7 (1)
$\mathrm{O} 3-\mathrm{Mo} 2-\mathrm{O} 4$	89.9 (2)	$\mathrm{O} 7-\mathrm{Mo} 3-\mathrm{O} 8^{\text {iv }}$	88.3 (2)
O3-Mo2-O5	87.4 (2)	O7-Mo3-O9	102.6 (1)
O3-Mo2-O6	101.5 (1)	O7-Mo3-O11	84.0 (1)
O3-Mo2-O7	156.2 (1)	$\mathrm{O} 8-\mathrm{Mo} 3-\mathrm{O}^{\text {iv }}$	87.8 (2)
O3-Mo2-O10	72.9 (1)	O8-Mo3-O9	100.7 (2)
O4-Mo2-O5	155.1 (2)	O8-Mo3-O11	72.9 (1)
O4-Mo2-O6	103.8 (2)	O9-Mo3-O11	170.9 (2)
O4-Mo2-O7	85.0 (2)		

Symmetry codes: (i) $-x+y,-x, z$; (ii) $x, x-y, z$; (iii) $-y,-x, z$; (iv) $-y, x-y, z$.
The H atoms were placed at calculated positions $[\mathrm{N}-\mathrm{H}=0.90 \AA$, $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N}, \mathrm{C})\right]$ and were included in the refinement in the riding-model approximation. The final difference Fourier map had a large residual electron-density peak located $3.5 \AA$

Figure 1

ORTEPII (Johnson, 1976) plot of (I); displacement ellipsoids are drawn at the 50% probability level. Symmetry labels refer to the codes in Table 1.
from the nearest atom $(\mathrm{H} 1 b)$. However, the electron density could not be refined as a water O atom.

Data collection: XSCANS (Bruker, 1994); cell refinement: LEAST SQUARES in XSCANS (Bruker, 1994); data reduction: REDUCE in XSCANS (Bruker, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The author thanks Professor Shu-Xia Liu of Northeast Normal University for the four-circle diffraction data, Professor Jian-Jian Fang of the Qingdao University of Science and Technology for the area-detector diffraction data, and the University of Malaya for supporting this study.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1994). XSCANS. Version 2.21. Bruker AXS, Inc., Madison, Wisconsin, USA.
Jian, F.-F., Xiao, H.-L., Zhao, Z.-R., Sun, P.-P. \& Zhao, P.-S. (2004). Inorg. Chem. Commun. 7, 1100-1104.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, S. X., Wang, C.-M., Zhai, H.-J. \& Li, D.-H. (2004). J. Mol. Struct. 654, $215-$ 221.

Ng, S. W. \& Rae, A. D. (1999). Z. Kristallogr. 214, 383-391.
Ng, S. W. \& Xie, Z.-X. (2003). Chin. J. Struct. Chem. 22, 691-699.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Peng, J., Zhou, Y.-S., Wang, E.-B., Xing, Y. \& Jia, H.-Q. (1998). J. Mol. Struct. 444, 213-219.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

